
新闻动态
NEWS CENTER
NEWS CENTER
2020-10-10
所谓社交推荐到底是什么?当我想认真思考这个问题的时候,我发现我根本没法从一个很好的点切入并给出准确的定义,于是我开始以关键词“社交推荐”为query进行搜索,但是无论是百度,还是谷歌,并没有给出对应的答案。
既然没有找到权威定义,那们就从自身理解出发,我对社交推荐的看法,主要有三点:
尽管有了这三点认知,我大致能够理解社交推荐存在的价值与意义,但有几个方面,我仍然存在疑虑。
关于这一点,可能有些难以理解,我尝试描述一下,大体是这样的:
A对B的主动推荐,一定综合了A自己对于B的理解,进行了一道信息筛选,且是点对点的推荐。在社交推荐中,A推荐的发出是难以预设接收对象是谁的,而接收者往往是被动接收A的推荐信息,如果说A主动推荐B,准确度是70%,而社交推荐中,A有十个好友接收到该推荐,那推荐的准确度就只有7%,而实际上,现代社会中很多用户的好友数一定是远大于这个数的。
总结一下:
当然,我们可以通过分析推荐内容对于B的适合程度,在推荐中,选择性进行展现,但这种社交推荐,掺杂了算法推荐,还算是社交推荐吗?
即使这依然算是社交推荐,A的推荐这一步骤,是否能起到强有力的信息除噪,我个人也是打一个大大的问号。
如果按照最简单的社交推荐来理解,最核心的两条原则应该是:
这两条原则指导下,社交推荐的后置工作就分为两块:
而算法推荐呢?
我们知道算法推荐主要有五种:协同过滤推荐、基于内容的推荐、基于关联规则的推荐、基于流行度推荐算法、混合推荐,而其中协同过滤推荐算法主要是分为UserCF(User Based Collaborative Filtering)和ItemCF(Item Collaboration Filter)。
等一下,我嗅到了一丝不对的气息,UserCF是不是就是我们上面谈到的社交推荐?
而这就存在悖论了,如果我认为社交推荐是与算法紧密相连,那它就越来越趋向于UserCF,这是个老玩意,有利有弊。
而如果把社交推荐中算法的刨除,通过“关系链推荐+复杂规则”来理解的话,其准确率上限是极低的。
除了上述问题之外,还有一个问题始终困扰着我,那就是社交推荐如何解除隐私边界问题。
看一看中“朋友在看”和“精选”社交推荐形式
就拿微信来说,我们理解的社交推荐经典使用场景在“看一看”、“视频号”两个模块。
在看一看中,“朋友在看”中能看到每个好友的推荐,如果朋友写了评论的话,还可以看到这一条评论,而在“精选”中,除了算法推荐内容,社交推荐体现在“朋友都看过”这个tag,我们发现看一看对于社交推荐的运用是较为克制的。
因为用户在浏览公众号内容的时候,如果不想自己的互动行为被展现,可以只点赞or收藏,在“精选”中,则是对社交推荐的深层运用,模糊个体的推荐行为,而从群体着手来进行推荐。